Sec 4.6 Related Rates

What is a Rate of Change?

change of output parameter \(\frac{d}{dt} \) an input parameter
rate inputs are often (not always) time \(\Rightarrow \) we'll focus on time
(example: surface area change wrt time \(\frac{d}{dt} \)

\[\text{wrt} = \text{"with respect to"} \]

Formulas:

Area:
The radius \(r \) and area \(A \) of a circle are related by the equation \(A = \pi r^2 \).

Write an equation that relates \(\frac{dA}{dt} \) to \(\frac{dr}{dt} \).

\[\frac{dA}{dt} = 2\pi r \frac{dr}{dt} \quad (1) \]

For ex. if \(r = 3 \text{ cm} \) and rate of radius change is \(1 \text{ cm/sec} \) what is rate of area change?

Using rel (1) we have \(\frac{dA}{dt} = 2\pi (3) \cdot 1 = 6\pi \text{ cm}^2/\text{sec} \).

The side \(s \) and area \(A \) of a square are related by the equation \(A = s^2 \).

Write an equation that relates \(\frac{dA}{dt} \) to \(\frac{ds}{dt} \).

\[\frac{dA}{dt} = 2s \frac{ds}{dt} \]

Volume:
The radius \(r \) and volume \(V \) of a sphere are related by the equation \(V = \frac{4}{3} \pi r^3 \).

Write an equation that relates \(\frac{dV}{dt} \) to \(\frac{dr}{dt} \).

\[\frac{dV}{dt} = \frac{4}{3} \pi \cdot 3r^2 \frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt} \]

Ex 1. A balloon is filled with air. What is the relationship between the rate of change of volume and the rate of change of radius.

\[\frac{dV}{dt} = \frac{4\pi \cdot 3r^2 \frac{dr}{dt}}{3} \quad \text{re-write as} \quad \frac{dV}{dt} = k \frac{dr}{dt} \]

Ex 2. What is the rate of increase of the volume of a balloon when the radius is 3 cm and the radius is increasing at a constant rate of 2 cm/sec.

\[\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \]

\[\frac{dV}{dt} = (4\pi (3)^2) \cdot 2 \]

\[\frac{dV}{dt} = 72\pi \text{ cm}^3/\text{sec} \]
Ex 3. The radius of a circular disk is increasing at the rate of 3 cm/sec. What is the rate at which the area is changing when the radius is 4?

\[
\frac{dA}{dt} = 2\pi (r) \frac{dr}{dt} = 2\pi (4) \cdot 3 = 24\pi \text{ cm}^2/\text{sec}
\]

Ex 4. Find the rate of change of the area of a square when the sides have length 3 cm and the sides are increasing at the constant rate of 9 cm/sec.

\[
\frac{dA}{dt} = 2 \cdot l \frac{dl}{dt}
\]

\[
\frac{dA}{dt} = 2(3) \cdot 9 = 54 \text{ cm}^2/\text{sec}
\]

Ex 5. Water is being poured into a container in the shape of a cylinder 4 cm high and 2 cm in radius at a rate of 6 cm3/sec. At what rate does the surface of the water rise?

\[
\frac{dV}{dt} = \pi r^2 h
\]

\[
\frac{dV}{dt} = \pi (2^2) \frac{dh}{dt} = \frac{6}{\pi} \cdot \frac{2^2}{\pi \cdot 2^2} = \frac{3}{2\pi} \text{ cm/sec}
\]

Note: it's plus because water is rising.

Ex 6. Water is being poured into a container in the shape of a rectangular box with square base (4 cm x 4 cm x 12 cm) at a rate of 50 cm3/min. At what rate does the surface of the water rise?

\[
\frac{dV}{dt} = 50 \text{ cm}^3/\text{min}
\]

\[
\frac{dV}{dt} = S^2 \cdot h \frac{dh}{dt}
\]

\[
50 = 4^2 \frac{dh}{dt}
\]

\[
\frac{dh}{dt} = \frac{50}{16} = \frac{25}{8} \approx 3.13 \text{ cm/min}
\]
Ex 7. A conical reservoir is being filled with water at a constant rate of 6 m3/min. If the reservoir is 3 m deep and 8 m in diameter at the top, find the rate at which the surface level of the water is rising at the instant the depth of the water is 2 m.

\[
\frac{dV}{dt} = 6 \text{ m}^3/\text{min}
\]
\[
h = 3 \text{ m}
\]
\[
r = 4 \text{ m}
\]
\[
\frac{h}{r} = \frac{3}{4}
\]

Now, let's consider the volume of the cone and its rate of change.

\[
V_{\text{cone}} = \frac{\pi r^2 h}{3}
\]
\[
\frac{dV}{dt} = \frac{16\pi h^2}{9} \frac{dh}{dt}
\]
\[
6 = \frac{16\pi h^2}{9} \frac{dh}{dt}
\]
\[
\frac{dh}{dt} = \frac{54}{16\pi(2)^2} = \frac{27}{32\pi} \text{ m/min}
\]

h = 2 \implies 0.27 \text{ m/min.}

Sometimes more than two quantities are changing within a certain relationship. At this point, you must consider the product rule, the quotient rule, and the chain rule when differentiating to express how different rates of change are related.

Areas

Rectangle:

\[
A = lw
\]

Find an equation that relates \(\frac{dA}{dt}, \frac{dl}{dt}, \text{ and } \frac{dw}{dt} \)

\[
\frac{dA}{dt} = \frac{dl}{dt} \cdot w + l \cdot \frac{dw}{dt}
\]

Triangle:

\[
A = \frac{1}{2} bh
\]

Find an equation that relates \(\frac{dA}{dt}, \frac{db}{dt}, \text{ and } \frac{dh}{dt} \)

\[
\frac{dA}{dt} = \frac{1}{2} \left[b \frac{dh}{dt} + \frac{db}{dt} \cdot h \right]
\]

Volumes

Cylinder:

\[
V = \pi r^2 h
\]

Find an equation that relates \(\frac{dV}{dt}, \frac{dr}{dt}, \text{ and } \frac{dh}{dt} \)

\[
\frac{dV}{dt} = \pi \left[2\pi r \frac{dr}{dt} + r^2 \frac{dh}{dt} \right]
\]

Cone:

\[
V = \frac{1}{3} \pi r^2 h
\]

Find an equation that relates \(\frac{dV}{dt}, \frac{dr}{dt}, \text{ and } \frac{dh}{dt} \)

\[
\frac{dV}{dt} = \frac{1}{3} \pi \left(2\pi r \frac{dr}{dt} + r^2 \frac{dh}{dt} \right)
\]

Cone:

\[
V = \frac{1}{3} \pi r^2 h
\]

Find an equation that relates \(\frac{dV}{dt} \) and \(\frac{dr}{dt} \) if \(h \) is a constant.
Sphere: \[V = \frac{4}{3} \pi r^3 \]
Find an equation that relates \(\frac{dV}{dt} \) and \(\frac{dr}{dt} \)

\[\frac{dV}{dt} = \frac{4}{3} \pi \cdot 3r^2 \frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt} \]

Rectangular box: \[V = lwh \]
Find an equation that relates \(\frac{dV}{dt} \), \(\frac{dl}{dt} \), \(\frac{dw}{dt} \), and \(\frac{dh}{dt} \)

\[\frac{dV}{dt} = lw \frac{dl}{dt} + lh \frac{dw}{dt} + wh \frac{dh}{dt} \]

Lengths of Sides

Right Triangle: \(x^2 + y^2 = z^2 \)
Find an equation that relates \(\frac{dx}{dt} \), \(\frac{dy}{dt} \), and \(\frac{dz}{dt} \)

\[2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 2z \frac{dz}{dt} \]

Right Triangle: \(x^2 + y^2 = z^2 \)
Find an equation that relates \(\frac{dx}{dt} \) and \(\frac{dz}{dt} \) if \(y \) is a constant.

\[2x \frac{dx}{dt} + 0 = 2z \frac{dz}{dt} \]

Diagonal of a rectangle: \(D = \sqrt{x^2 + y^2} \)
Find an equation that relates \(\frac{dD}{dt} \), \(\frac{dx}{dt} \), and \(\frac{dy}{dt} \)

\[\frac{dD}{dt} = \frac{2x \frac{dx}{dt} + 2y \frac{dy}{dt}}{\sqrt{x^2 + y^2}} \]

\[\frac{dD}{dt} = \frac{x \frac{dx}{dt} + y \frac{dy}{dt}}{\sqrt{x^2 + y^2}} \]

Right Triangle: \(\tan \theta = \frac{y}{100} \)
Find an equation that relates \(\frac{d\theta}{dt} \) and \(\frac{dy}{dt} \) if one side of this triangle is made constant.

\[\sec^2 \theta \frac{d\theta}{dt} = \frac{1}{100} \frac{dy}{dt} \]